MicroRNAs Act as Cofactors in Bicoid-Mediated Translational Repression
نویسندگان
چکیده
Noncoding RNAs have recently emerged as important regulators of mRNA translation and turnover [1, 2]. Nevertheless, we largely ignore how their function integrates with protein-mediated translational regulation. We focus on Bicoid, a key patterning molecule in Drosophila, which inhibits the translation of caudal in the anterior part of the embryo [3, 4]. Previous work showed that Bicoid recruits the cap-binding protein d4EHP on the caudal mRNA to repress translation [5]. Here we show that miR-2 family microRNAs are essential cofactors in the repression of caudal. Using an in vivo sensor, we demonstrate that Bicoid acts through a 63 nt response element in the caudal 3' UTR that includes a single miR-2 target site. Mutating that site abolishes Bicoid-mediated repression, and this effect can be partly reversed by expressing a microRNA with compensatory changes that restore binding to the mutated target. Four predicted Bicoid splice isoforms are capable of caudal repression, including two that lack the d4EHP interaction domain; all four isoforms require the microRNA target for repression. The synergy between Bicoid and microRNAs appears to have evolved recently in the context of the drosophilid caudal BRE. The discovery that microRNAs play an essential role in Bicoid-mediated translational repression opens up new perspectives on Bicoid's function and evolution.
منابع مشابه
MicroRNAs: Critical Regulators of mRNA Traffic and Translational Control with Promising Biotech and Therapeutic Applications
Context:MicroRNAs (miRNAs) are a class of short, endogenously-initiated, non-coding RNAs that post-transcriptionally control gene expression via translational repression or mRNA turnover. MiRNAs have attracted much attention in recent years as they play critical roles in gene expression and are promising tools with many biotech and therapeutic applications. The molecular mechanisms und...
متن کاملTranslational Repression by Bicoid Competition for the Cap
Eggs and embryos have proven to be fertile grounds for discovery and characterization of a variety of mechanisms used in posttranscriptional control of gene expression, mechanisms that are central to embryonic patterning and development. In this issue of Cell, solve a puzzle surrounding the action of the Drosophila Bicoid morphogen in formation of the Caudal protein gradient and in doing so des...
متن کاملMechanism of miRNA-mediated repression of mRNA translation.
MicroRNAs regulate the expression of protein-coding genes in animals and plants. They function by binding to mRNA transcripts with complementary sequences and inhibit their expression. The level of sequence complementarity between the microRNA and mRNA transcript varies between animal and plant systems. Owing to this subtle difference, it was initially believed that animal and plant microRNAs a...
متن کاملBicoid associates with the 5'-cap-bound complex of caudal mRNA and represses translation.
Translational control plays a key role in many biological processes including pattern formation during early Drosophila embryogenesis. In this process, the anterior determinant Bicoid (BCD) acts not only as a transcriptional activator of segmentation genes but also causes specific translational repression of ubiquitously distributed caudal (cad) mRNA in the anterior region of the embryo. We sho...
متن کاملmRNA destabilization is the dominant effect of mammalian microRNAs by the time substantial repression ensues.
MicroRNAs (miRNAs) regulate target mRNAs through a combination of translational repression and mRNA destabilization, with mRNA destabilization dominating at steady state in the few contexts examined globally. Here, we extend the global steady-state measurements to additional mammalian contexts and find that regardless of the miRNA, cell type, growth condition, or translational state, mRNA desta...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Current Biology
دوره 23 شماره
صفحات -
تاریخ انتشار 2013